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Objective

� At the nanoscale, negligible 
effects on a semiconductor’s 
electrical properties such as 
surface states become significant
� Large surface area-volume ratio

� The existence of surface states 
dramatically changes the overall 
doping profile of a nanopillar

� The effective radius of a 
pillar decreases and 
changes the conductive size

� By studying resistivity and 
taking into account the changes 
due to surface states, we can 
estimate the actual surface state 
density on a nanopillar

K. Seo et al. "Surface charge density of unpassivated and passivated metal-

catalyzed silicon nanowires." Electrochemical and Solid-State Letters, 2006, Issue 3, 

Vol. 9.



Motivation

� Would like to ideally determine the surface 

state density NS

� Surface state reduction techniques such as 

passivation need accurate measurements

� An effective, easy and simple way to 

determine NS is desired

� Ability to determine density using easily taken 

or already existing IV measurements



Background – Surface States

� Surface states occur due to abrupt 
transition between solid material to 
outside
� Periodicity of lattice is interrupted

� Creates energies in the forbidden band 
gap of material

� Opposite charges are created within 
material to balance out surface 
charges
� Creates a depletion region

� Transport is not available within the 
depletion region, effectively 
electronically “shrinking” the pillar
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Background – Surface States

Pinned Fermi level at 

metal-GaAs contact

� Detrimental effects of surface 
states
� Energy bands within bandgap

� Create carrier trapping centers

� Lowers effective carrier 
concentration
� Depletes the pillar - hinders carrier 

transport

� Pins the Fermi level, bending 
conduction and valence bands
� Creates a high Schottky barrier 

regardless of contact

Banerjee, Sanjay and Streetman, Ben., "Solid State Electronic 

Devices." Upper Saddle River, NJ : Pearson Education, Inc, 2006.



Background - Passivation

� Passivation reduces the surface state density

� Uses replacement atoms to bind to vacancies created by the 
abrupt change in periodicity of lattice

� Dangling bonds are “capped” and thus charges are lessened, 
decreasing NS

� Accomplished with a sulfuric solution
� High chemical affinity between GaAs and sulfur

Ga

S
As



Approach

� Considering two radii, one physical rphys and 

one decreased by the depletion region relec, 

we model the “effective” radius

� Begin with Poisson’s equation

� Put into cylindrical coordinates

∇2���� =  −4�� 

2��2 + 1� �� + 2��2 = −4��,    � = ���, �� 



Approach

� Assuming abrupt transition in charge density ρ

at radius, potential ψ within nanopillar becomes

� And thus the surface potential becomes

� =  � 0                       0 ≤ � < ��������� − ���,     ����� ≤ � ≤ ��ℎ� !
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Schmidt et al., Applied Physics A 86 187 (2007)



Approach

� Using charge neutrality, we find 

that the difference between the 

surface potential and the charge 

density below the surface must 

be zero

� When solved for relec , we see 

that

�%��ℎ� 2 − �����2 &� + 2���ℎ� %'( + ')* & =  0 ')* = −�2� �  
 

����� = +��ℎ� 2 + 2��ℎ� '( − 2��ℎ� � �0���� − ��� ,1 + ��ℎ� �22#$ � - 

M. T. Bjork, et al. "Donor deactivation in silicon 

nanostructures." Nature Nanotechnology, 2009, Vol. 4.



Approach

� Next, we must define a critical radius acrit

which determines if the pillar is depleted or 

not, when relec goes to zero

.��)* = #$�2�/ 0−1 + 11 + 4�2�/�#$ %�2�/�0 − '(&2123 ,     
≈   2� %�2�/�0 − '( & 

Schmidt et al., Applied Physics A 86 187 (2007)



Approach

� Depending if our physical radius is below or 

above the critical radius, we find the effective 

carrier concentration to be

5�(( = 50 exp�9� � 4# 9���ℎ� 2  1exp ,9 ���ℎ� 24#$ - − 12 , :;<=> < ?@:AB 

5�(( = 50 exp�9�0� "�C2.2 + 4# 9���ℎ� 2 D1 − exp E9 �4#$ %�����2 − ��ℎ� 2 &FGH , :;<=> > ?@:AB 

Schmidt et al., Applied Physics A 86 187 (2007)



Approach

� Finally, we can relate this effective carrier 

concentration with resistivity via the mobility

� And given resistance from measured I-V 

curves

� = 1�JK 5�(( ,    JK = J01 − L5�((1018
 ,

Nℎ��� J0 = 8500 �P2Q  �5 − *���� 

R = �S�� ,    Nℎ��� �� = ������2
 

Stichtenoth et al., APL 92 163107 (2008)



MATLAB® Model

� We can now simulate the effect on the electrical radius, 

effective carrier concentration, and resistivity of a nanopillar

due to the presence of surface states

� For simulation, we consider an n-doped GaAs nanopillar with 

different doping concentrations, surface state densities and 

radii

� For a physical device, we use an 82 nm radius , and for fixed 

doping, we use 7 x 1018 cm-3 . 

� Simulate the changes on relec , neff, and ρ due to NS

� The simulations are then repeated, sweeping over several 

surface states densities (from 3 x 1012 cm-2 to 1x 1014 cm-2)



Model - Radius
� Electronic radius relec is the effective conducting radius

� For higher surface states density, the difference between 
physical radius and electrical radius is larger 
� Fully depleted region gets wider

� The point where relec begins is at the critical radius, determined 
by NS

� Large effect of small changes in surface state density is shown
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Model – Critical Radius
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� Linear relationship between surface state density and 

depletion region

� acrit decreases linearly with doping

� Value of acrit corresponds to point where relec becomes 

non-zero

NS



Model – Effective Carrier 

Concentration
� Based on the surface state density at a constant doping level, the 

effective carrier concentration changes

� A drastic difference (compared to actual doping) in orders of 

magnitude until NS is reduced to a specific level based on ND

� At lowest doping, concentration reaches intrinsic value of 2.25 x 106 cm-3

� At high doping or low NS the pillar is almost non-depleted

� Shows a dramatic change in carrier transport ability of the nanopillar
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Model – Effective Carrier 

Concentration
� The model can also account for another case of changing 

surface state density with different radii (constant ND)

� Below a certain density for each size, the surface states no 
longer adversely affect the carrier concentration

� We see that the smaller the nanopillar, the more affected its 
transport is by surface state density
� Depletion area remains the same size for specific NS, leaving less 

area for transport as pillar radius decreases
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Model - Resistivity

� Relating neff to resistivity, we can model the behavior 
of NS or ND

� As surface state density decreases, so does resistivity

� Depletion region decreases, more carrier transport

� Can match these values to resistivity gained from I-V 
measurements on real pillars
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Device Fabrication

� n-doped GaAs nanopillars
� Catalyst-free via selective-area epitaxy using MOCVD

� 700° C, V-III ratio of 10:1, 20 minute planar growth at 1 A/s

� Hexagonal shaped, using a SiO2 mask for patterning

� Grown in different arrays of constant height and width
� Height range: 265 – 626 nm

� Width range: 27-82 nm

� Pillars studied in an array with height 306 nm, radius 82 nm



Doping & Passivation

� Device doped using Si for n-type

� Concentration determined using Hall measurements

� Used different concentrations for calibration

� Both passivated and unpassivated pillars used

� Doping level determined to be 7 x 1018 cm-3

� Passivation done using ammonium sulfide solution (NH4)2S, 

at 22% concentration

� Process created one monolayer of sulfur on As-terminated 

surface

� Same sample measured, passivated, and re-measured 

twice



Measurement

� Pillars measured using AFM
� Contact-mode, Au/Pt-coated tip

� Pillars still on growth substrate

� Current measured with tip voltage of -10 to +10 V

� Sample placed on metal disc with silver epoxy, 
top of pillar probed with tip



Results – No Passivation

� Tip simply contacting pillar top creates rectifying I-V Curve  
(diode-like)
� Injection-limited current

� Exponential I-V curve only at forward bias

� Pressing tip into pillar created a I ∝ V2 curve
� Space-charge limited current, lower contact resistance

� Possible destruction of native oxide, or curved tip creating a field 
enhancement
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Results – No Passivation

� Pressing tip in, average I-V measurements over 10 samples 
showed resistance of 44.9 GΩ
� Using linear approximation of forward bias region

� Current flow begins at 2 V, reaches 50 pA at 4 V

� Maximum specific resisitivty of 8 x 105 Ω-cm
� Average value of 3.9 x 105 Ω-cm

� Schottky barrier height 1.159 eV

� Pillar’s transport severely limited by both surface state 
density and Schottky barrier
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Results – 30 Min Passivation

� Pillars were passivated in (NH4)2S for 30 min

� Similar I ∝ V2 curve obtained, but current flows at a lower 
bias
� Current flow begins at 0.75 V, reaches 50 pA at 1.5 V

� Contact resistance still exists
� Still due to Schottky barrier

� Average resistance 17 GΩ

� Average resistivity 1.17 x 105 Ω-cm

� Further passivation needed to obtain a linear I-V curve
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Results – 90 Min Passivation

� After 90 min passivation, I-V curve becomes linear

� Much more current flows at a much lower bias
� Current is 1.06 μA at 0.625 V

� Much higher current than the 30-min and non- passivated pillars

� Suggests transport is no longer hindered by depletion region

� Schottky barrier height only 0.546 eV

� Average resistance 724 kΩ

� Average resistivity 4.7 Ω-cm
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Overall Results – Surface State Density
� Surface state density is lowered 

with passivation

� 0 and 30 minute passivation 
densities overlap - slight 
decrease

� 90 minute passivation lowers 
by half an order of magnitude –
large decrease

� High doping of 7 x 1018 cm-3

means small changes in NS will 
be significant

� Resistivity approaches lowest 
possible calculated value of 
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Summary

� Devised a system of equations to relate resistivity to surface 
state density for n-doped GaAs nanopillars
� Relationship with doping concentration, electronic radius, 

effective carrier concentration, resistivity

� Distinguished between physical radius and electronic radius
� Depletion region created by surface states

� Used MATLAB to simulate these equations for nanopillars
� Tied actual I-V data and resistivity from real nanopillars to model 

to determine their surface state density

� Observed and recorded the effects of passivation on 
nanopillars and their effect on surface states
� Determined amount of surface state reduction

� A simple, fast and inexpensive method to determine the 
hard-to-measure parameter of surface state density



Future Work

� Further verify accuracy using a single-wire device

� Single nanopillar off-substrate placed on metal 

contacts for Ohmic contact

� Remove any possible effects from Schottky barrier 

created by AFM tip

� Fabrication and testing of device, passivated and 

non-passivated, is still underway

contact

nanowire
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